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Abstract: Generation and propagation of various soliton molecules (SMs) in fiber system are 

reviewed. SMs can survive either in fibers or fiber lasers. Dispersion-managed (DM) fiber link 

is the only platform for SMs demonstration while various fiber lasers can support different SMs. 

The fundamental unit of SMs can be conventional solitons generated in anomalous dispersion 

regime, stretched pulses in DM fiber lasers, parabolic pulses or gain-guided solitons in normal 

dispersion regime. SMs with typically close soliton separation are presented. In addition, we 

demonstrate a new kind of SMs with nanosecond soliton separation. The narrow spectral 

filtering is required for the generation of SMs with such long distance interaction.  

I. Introduction 

Solitons refer to pulses propagating without distortion in media. It is the product of balanced 

diffraction and nonlinearity in space, as well as the consequence of equivalent influence 

between the dispersive effect and the nonlinear effect in time, which is also known as a “spatial-

temporal soliton”. In fiber optics, solitons generally known as ultrashort pulses generates in 

fiber systems: fibers or fiber lasers, which support “temporal solitons” only. Solitons are natural 

binary information units where “1” stands for soliton and “0” for no soliton. Therefore, one of 

the most promising applications of solitons is telecommunications and lots of theoretical work 

and experimental demonstrations in lab have been done long time ago. For example, soliton 

propagation beyond 4000 km was demonstrated in 1988 [1]. However, so far there have been 

no practical applications of solitons in telecommunications. The wavelength-division 

multiplexing (WDM) technique in telecommunications is due to exhausting its capacity 

because of the Shannon limit [2]. This is a major challenge, because current 

telecommunications is based on optical fibers and on binary encoding. 

Although solitons are lagged behind WDM in practical applications in telecommunications, 

theoretical work to improve the capability of information transmission systems based on 

solitons is under development. One of them is the coding with an ‘‘alphabet’’ of more than two 

letters [3], where a soliton represents a letter. Stable bound states of two solitons or multiple 

solitons are needed for the realization of the coding scheme. M. Stratmann et al. first 

demonstrated a bound state of temporal solitons in optical fibers [3]. The structure exists only 

in a dispersion-managed (DM) fiber link and it is actually a pair of bright solitons bound by a 

dark soliton. The two bright solitons are in antiphase. It is found that the separation between 

the two solitons will be maintained in an equilibrium distance, which is reminiscent of the 

equilibrium separation of the two constituents of a diatomic molecule. Therefore, the structure 

is also called a soliton molecule (SM). Further study revealed that coding with solitons and 

SMs allows encoding two bits of data per clock period [4, 5]. A three-pulse SM is demonstrated, 

which completes an alphabet of four different symbols: no soliton, single soliton, two-pulse 

SM, and a three-pulse SM. In addition, as SMs have a certain phase structure and can survive 

in two orthogonal states of polarization in a fiber link, all presently developing schemes of 

phase modulation and/or polarization multiplexing can be potentially combined with the SM 

encoding approach, of course, with the sacrifice of increased complexity. Abdelâali Boudjemâa 



et al. studied the stability of N-soliton molecules in DM optical fibers [6]. They found that N-

soliton molecules with N=4 can survive in the fiber link, but the binding energy per soliton is 

saturated at N≥7 under specific parameter sets. Consequently, multipulse SMs with soliton 

number larger than 3 make the further scaling up of fiber’s data-carrying capacity possible [7].  

Fiber lasers are a very different system compared with fibers, where in general the former is 

a dissipative system while the latter could be considered as a Hamilton system. However, if the 

loss in a fiber system is significant or any amplifier(s) is used in a fiber system, then fibers 

could also be represented by a dissipative system. Ultrashort pulses can be generated in fiber 

lasers considering the balance between the dispersion and the nonlinearity, apart from the gain 

and loss balance, as well as other boundary conditions. In a stable state, in a fixed position in 

the fiber laser, the generated ultrashort pulse maintains its profile, hence, the ultrashort pulses 

generated in fiber lasers can be considered as solitons. Theoretically ultrashort pulse generation 

in fiber lasers can be described by the Ginzburg-Landau equation and its variants, which under 

certain hypothesis can be simplified to the nonlinear Schrödinger equation. Therefore, solitons 

generated in fiber lasers have similar properties compared with solitons generated in fibers. 

Equation (1) shows an example of coupled Ginzburg-landau equations [8], where the dispersion 

effect, nonlinear effect, gain and gain dispersion effect are included, where u and v are the 

complex optical envelopes in orthogonal polarization mode along optical fiber. k″is the second 

order dispersion coefficient, k‴ is the third order dispersion coefficient, and γ represents the 

nonlinearity of the fiber. g is the saturable gain coefficient of the gain fiber and Ωg is the gain 

bandwidth. 
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The observation of SMs in fiber lasers is actually before the discovery of SMs in fibers. SMs 

are first observed in fiber lasers [9]. It is soon demonstrated that the solitons are phase-locked 

[10, 11]. SMs with soliton number larger than 2 are obtained independently by different groups 

[12-14]. Phase relationship between solitons in SMs are studied [15, 16]. Bound state of SMs 

are reported [17]. Different from that SMs exist in DM fiber link only, SMs could be observed 

in fiber lasers operated in various dispersion regimes, even when the fundamental units of the 

SMs are intrinsically different: such as traditional solitons generated in the anomalous 

dispersion regime [9, 11, 17], dispersion-managed solitons [10, 13-16, 18-24], pulses generated 

in the normal dispersion regime [12, 25-27]. Apart from the stable SMs, vibrating SMs were 

observed with the temporal separation and the phase relationship oscillating with a period much 

larger than the cavity round-trip time [28]. Provided that the vibration cycle is stable, the 

vibrational motion has a direct influence on the averaged optical spectra (loss of contrast in the 

spectral fringes) and autocorrelation traces (reduction of the amplitude of the side peaks, with 

a broadening of the side peaks) which can be recorded. SMs with restless internal soliton 

movement were reported [29, 30], where fundamental unit is the vector soliton. Very recently, 

a real-time probe of the internal dynamics of femtosecond SMs was reported [31]. Using the 

time-stretch dispersive Fourier transform [32], the formation of stable SMs and rapid internal 

motions for a diverse set of bound states were uncovered. Sub-femtosecond precision relative 

timing jitter characterization between two solitons composing a SM is enabled by the balanced 

optical cross-correlation method [33]. Even for a stationary SM generated from a fiber laser, 

there actually exists a tiny vibration between the solitons of the SM. Lili Gui et al. reported 

bound solitons with various phase differences and pulse separations in a net-anomalous-

dispersion erbium fiber laser mode-locked by carbon nanotubes, including bound states with 

phase differences close to 0, ±𝜋/2, and 𝜋 [34]. 



In this paper, we summarize the SMs observed in different fiber lasers and their properties. 

We note that SMs included in this overview refer to soliton bunches, which can function 

similarly to a single-pulse soliton. In Section II we recall the theoretical demonstration of SM 

generation in fiber systems and especially in fiber lasers. We describe SM generation in fiber 

lasers operated in anomalous dispersion regime in Section III. In the following section we 

explain the SMs consisting of DM soliton in fiber lasers. The SMs based on parabolic pulses in 

a normal dispersion fiber and gain-guided solitons in large normal dispersion regime, 

respectively, are introduced in Section V. Finally we show a new kind of SMs with nanosecond 

soliton separation. A narrow spectral filtering is required for such SM generation. Section VII 

summarizes our main conclusion. 

II. Theoretical demonstration of SM generation 

Boris A. Malomed predicted that two-pulse and multipulse bound states could be stable under 

the frame of perturbed cubic nonlinear Schrödinger equation or the quintic Ginzburg-Landau 

equation [35]. By studying the interaction between slightly overlapped solitons, it was found 

that two-pulse and multipulse bound states with weak stability could be generated. The 

existence and stability of two-soliton bound states were reported in ref [36], where the 

interaction between weakly overlapping pulses described both in the quintic Ginzburg-Landau 

equation and in the driven damped nonlinear Schrödinger equation are studied. Bound states of 

the pulses correspond to fixed points of the dynamical system. It is found that all the fixed 

points in the quintic model are unstable. However, a special type of fixed point, spirals, has an 

extremely weak instability and may be treated as a stable soliton pair. For the driven damped 

model, the existence of fully stable bound states is demonstrated, provided that the amplitude 

of the driving field exceeds a very low threshold. N. N. Akhmediev et al. analyzed stable soliton 

pairs transmission in an optical fiber and found that the distance between the solitons and the 

phase difference between them are defined by energy and momentum balance equations, rather 

than by equations of standard perturbation theory [37]. The stable soliton pairs are featured 

with a π/2 phase difference between solitons. For multipulse bound state, the phase difference 

could bias from π/2. 

 
Fig. 1 Schematic of a DM fiber link. 

When a pulse propagates in fibers, the anomalous group-velocity dispersion supports bright 

solitons while dark solitons can survive in normal dispersion fibers. By combined fiber 

segments with opposite dispersion, a DM fiber link as shown in Fig. 1 could be set up. By 

appropriate choice of the individual fiber length, the total dispersion of the fiber link can be 

selected to be anomalous, zero, or normal. The zero total dispersion is preferred in principle for 

telecommunications. Stratmann et al. numerically found that, in a DM fiber link with 

appropriate dispersion, there exists a stable bound state where two bright solitons are bound to 

each other with a dark soliton separating them in the time domain [38]. The bright solitons are 

in antiphase, and they sit at a certain temporal separation from each other. Diverged from the 

equilibrium distance will be rectified during propagation. It has also been found that the bound 

state is unstable in constant dispersion fibers, but only exists in DM fiber links. 



 
Fig. 2 Numerically obtained bound solitons (left: pulse profile; right: pulse spectrum) [11]. 

D. Y. Tang et al. [11] demonstrated in a fiber laser both experimentally and numerically that 

two solitons binding together tightly with fixed pulse separation can function as a fundamental 

unit as that of a single soliton, as shown in Fig. 2. Considering that the pulse propagation in 

fibers is governed by the coupled Ginzburg-Landau equations, stable bound solitons with 

different pulse separations could be obtained under appropriate parameter settings, independent 

of the initial conditions. Based on the same fiber laser, D. Y. Tang et al. further studied the 

soliton interaction [39], identifying three types: a global type of soliton interaction caused by 

the existence of unstable continuous wave components, a local type of soliton interaction 

mediated through the radiative dispersive waves, and the direct soliton interaction. The last one 

results in the generation of bound solitons with close temporal separation. Based on the same 

theoretical model but moved to the DM fiber laser, we numerically reproduced the 

experimentally observed bound states of DM solitons in a DM fiber laser with near zero group-

velocity dispersion [19]. As shown in Fig. 3, the modulated spectrum has a Gaussian contour 

without Kelly sidebands [40]. The phase difference between the two pulse peaks is about 12.5π. 

In addition, bound states of SMs are numerically demonstrated as shown in Fig. 4. Depending 

on the operation condition, different SM separations could be achieved. Very recently, the role 

of third-order dispersion on two- and multi-soliton bound states, both stationary and oscillatory 

one, is studied in a fiber laser near the zero-dispersion point, based on the complex Ginzburg–

Landau equation with the cubic-quintic nonlinearity term [41]. Several specific families of 

robust bound states of solitons were obtained. The stationary bound states are featured with 

constant soliton separation while the dynamical bound states are characterized with oscillating 

soliton separation. Further investigation using a different fiber laser with large normal 

dispersion [26] suggested that bound state of gain-guided solitons could be generated due to 

the direct soliton-soliton interaction, as shown in Fig. 5, where the pulse profiles should be 

overlapped somewhere during evolution in the cavity. 

 
Fig. 3 Numerically obtained bound solitons in a DM fiber laser (left: pulse profile; right: pulse spectrum) [19]. 

 



 
Fig. 4 Numerically obtained bound state of DM SMs [19]. 

 
Fig. 5 Numerically obtained bound state of two gain-guided solitons at the cavity positions with the minimum and 

maximum pulse width [26]. 

Soliton bunches with 3 solitons were numerically constructed to explain the missing spectral 

modulation in an experimental observation of passive harmonic mode locking of bunches of 

single-pulse solitons or twin-pulse solitons. It is found that the large number of solitons in a 

bunch, which blurs the extra spectral modulation, may cause the missing spectral modulation; 

on the other hand, it may result from the specific phase relationship between the solitons in the 

bunch [20]. By taking into account the Lyot filter effect due to the strong birefringence, we 

demonstrated numerically the ultra-high-repetition-rate bound-solitons, which is due to the 

joint effect of the dissipative four-wave-mixing effect [42] and the modulation instability 

process [43, 44] occurring in the laser. As shown in Fig. 6, a stable SM pulse train with 

repetition rate of ~125 GHz could be achieved by increasing the pump power after a stable 

single-soliton pulse train is obtained. 

 
Fig. 6 Numerically obtained ultra-high-repetition-rate bound soliton train [21]. 



The abovementioned SMs in fiber lasers are all based on scalar solitons as there are 

polarization dependent components in the fiber lasers. A vector soliton in fibers refers to a 

soliton having multiple polarized components propagates as a unit [45, 46]. Recently we 

numerically reproduced bound states of vector dissipative solitons (VDSs) in an erbium-doped 

fiber laser mode locked with a semiconductor saturable absorber mirror and operated in the 

normal dispersion regime [22]. The fundamental unit of the bound states could be either 

coherently coupled VDSs or incoherently coupled VDSs. The soliton separation is fixed and 

invariant to operation condition changes as long as the VDSs survived. In addition, bound states 

of dark solitons were analyzed in the quintic Ginzburg-Landau equation [47]. In particular, the 

bound states exist in a wide range of parameters and are highly stable. Based on the complex 

Ginzburg-landau equation, bound states of one-, two-, and three-dimensional solitons [48] as 

well as cavity SMs [49] were demonstrated. 

III SMs of traditional solitons in fiber lasers 

Traditional solitons are generated in fiber lasers of anomalous dispersion. Due the balanced 

interaction between the dispersion effect and the nonlinear Kerr effect imposed on pulses during 

propagation, pulses can propagate without distortion. One of the intrinsic features of traditional 

solitons is the appearance of Kelly sidebands [40].  Similar spectral sidebands were predicted 

by BorisA. Malomed independently [50]. 

 
Fig. 7 Typical spectrum of a bound state of solitons [9]. 

D. Y. Tang et al. used an in-house fiber laser with anomalous dispersion and confirmed 

experimentally the existence of stable bound states of solitons with discrete, fixed soliton 

separations [9]. Figure 7 shows a typical spectrum of a bound state of solitons observed. The 

spectral modulation has almost symmetric structure with a dip in the center, which indicates 

that the phase difference between the bound solitons is roughly π as predicted [35]. Further 

experimental observation [11] suggests that the bound state of solitons can have different 

soliton separations. Similar to single-pulse soliton, the bound state of solitons can function as 

a unit and form another bound state or a multiply pulsing state. The interaction between the 

bound-soliton pairs clearly exhibits the particle-like nature of the soliton interaction. Three 

bound soliton pairs with exactly same soliton separation were observed as shown in Fig. 8 [9]. 

The newly appearance/disappearance of the fundamental unit with pump power is the bound-

soliton pair, not the individual soliton more. Numerical simulation reproduced all the 

experimental details. Detailed exploration on soliton interaction [39] suggests the long-distance 

interaction between solitons, which explains the existence of bound solitons with a soliton 

separation that is larger than 5 times of the soliton pulse width. 



 
Fig. 8 A typical autocorrelation trace showing the state of 3 bound-soliton pairs [9]. 

Ⅳ SMs of DM solitons in fiber lasers 

Grelu et al. reported phase-locked SMs in a DM fiber laser [10]. Differently from what D. Y. 

Tang et al. observed and reported in [9], the observed stable pulse pairs were with a ±π/2 phase 

difference. 

Apart from the twin-pulse SMs, we present experimental evidence of multipulse bound 

solitons with fixed pulse separations [14]. SMs consisting of 3 solitons and 4 solitons are 

observed in a DM fiber laser. In addition, the SMs indeed function as a unit to form the further 

bound states of SMs. Example of bound states of twin-pulse and three-pulse SMs are shown in 

Fig. 9. 

 
Fig. 9 Autocorrelation trace of various SMs (top-left: three-pulse SM; bottom-left: 4-pulse SM) and the bound state 

of SMs (top-right: bound state of twin-pulse SMs; bottom-right: bound state of three-pulse SMs) [14]. 

 



 
Fig. 10 Oscilloscope trace and corresponding spectrum of a period-doubling pulse train based on SMs [18]. 

SMs of DM solitons can exhibit other properties inherent to single-pulse solitons in DM 

fiber lasers. We experimentally observed period-doubled, period-quadrupled, and chaotic states 

of SMs in a DM fiber laser [18]. The generated bound state of solitons, or SMs, indeed function 

as an entity to exhibit complicated nonlinear dynamics, such as the period-doubling route to 

chaos. In figure 10, we show for example a period-doubling pulse train based on SMs [18]. 

Limited by the resolution of the measurement system, the detailed intensity variations of each 

of the solitons under period doubling bifurcations could not be resolved. There are three 

possible ways for a two-pulse bound soliton exhibiting a period-doubling intensity pattern. The 

two solitons simultaneously experience the period-doubling in phase, one soliton experiences 

the period-doubling while the other one remains stable, or two solitons simultaneously 

experience the period-doubling out-of-phase, but the total intensity shows the period-doubling. 

Ⅴ SMs based on pulses generated in normal dispersion fiber lasers 

Bright solitons can be generated in fiber lasers with normal dispersion. By carefully designing 

a fiber laser, Ilday et al. theoretically and experimentally demonstrated self-similar evolution 

of parabolic pulses in most of the fiber laser [51]. Pulse breathing happens only once even it is 

indeed a DM fiber laser. Self-similar propagation of intense pulses will be terminated if any 

bandwidth limitation is imposed [52]. Ortaç et al. reported the observation of self-similar 

propagation of bound state pulses in an ytterbium-doped double-clad fiber laser [25]. In 

addition, a triplet of parabolic pulses with different time separations was observed. All the 

pulses in the bound states can be extra-cavity compressed to ~100 fs. 

 
Fig. 11 A typical bound state of gain-guided solitons: left: autocorrelation trace; middle: optical spectrum; right: 

pulse train [26]. 

Dissipative solitons (DSs) could be generated in fiber lasers with large normal dispersion, 

where spectral filtering is required [53]. In erbium-doped fiber lasers, as the gain fiber itself 

can provide gain bandwidth limitation equivalent to spectral filtering, no practical spectral 

filtering component is required. Consequently, the generated DSs are called as “gain-guided 

solitons” [54, 55]. For ytterbium-doped fiber lasers, as the gain fiber has broad bandwidth, a 

real spectral filter with narrow bandwidth is generally required [56]. The typical feature of a 

DS is the steep spectral edge(s) [54-56]. We observed bound states of gain-guided solitons in a 



DM fiber laser with larger normal dispersion [26]. Figure 11 shows a typical bound state of 

gain-guided solitons. The ratio between the pulse separation and the pulse width is 34.4, far 

larger than the setting criterion of direct soliton-soliton interaction [39]. Numerical simulation 

demonstrated that the bound state is still the consequence of direct soliton-soliton interaction 

as the pulse is substantially broadened at certain position in the cavity due to the pulse breath. 

Therefore, the ratio between the pulse separation and the pulse width could be less than 5 during 

evolution in cavity, which is small enough for the appearance of direct soliton-soliton 

interaction. 

Ⅵ SMs with nanosecond soliton separation 

Depending on the soliton separation, different soliton interactions are dominant. Consequently, 

different soliton dynamics are expected. The soliton interactions can be classified into three 

types [39]. The bound states of close separated solitons stem from direct soliton-soliton 

interaction due to overlapping of the pulse tails. To facilitate the classification, we proposed a 

judgement of 5 times of the pulse duration for identifying the direct soliton-soliton interaction 

[39]. For tightly bound states [9-11, 15-16, 19, 25, 26] with the ratio between the soliton 

separation and soliton duration is less than 5, the direct soliton-soliton interaction is particularly 

strong. With that, the bound state itself can function as a unit to form further complicated 

dynamics, intrinsic to a single-pulse soliton, for example such as a bound state of a bound state 

of two solitons [16]. For loosely bound states [18, 20, 25] with the ratio larger than 5, the bound 

state can still function as a unit, for example, exhibiting period doubling and forming harmonic 

mode locking. However, the internal structure of the loosely bound states can change with the 

operation conditions, for example, the soliton separation or even the soliton number will change, 

which is similar to a SM with different molecule energy or a new SM generation.  

So far, all the above-mentioned studies show SMs with small internal soliton separations. In 

this section, we report on the observation of another type of SMs in an all-normal-dispersion 

fiber laser. Different from the general SMs, the soliton separation is beyond nanosecond. SMs 

with the same soliton separation but with different soliton numbers are observed. We suspect 

that the narrow spectral filtering is the reason for the generation of this new kind of SMs. 

 
Fig. 12 Schematic of the laser setup. WDM: wavelength division multiplexer; YbDF: ytterbium-doped fiber; PC: 

polarization controller. 

 

The fiber laser is shown in Fig. 12 with a ring cavity of about 317 m. The gain is provided 

by a 40 cm long ytterbium-doped fiber (YbDF), co-pumped by a 976 nm laser diode. All the 

other fiber inside the cavity is 1060XP single mode fiber. The nonlinear polarization rotation 

technique is used for achieving mode locking with the help of a fiber-type polarizer and a 

polarization controller (PC). An output coupler provides the output ratio of 10%. A 

polarization-independent isolator ensures unidirectional operation.  

When the pump power is increased to a specific threshold, multiple solitons are automatically 

obtained if the PC is appropriately set. Different from the general multiple soliton states, those 



include multiple solitons with randomly irregular spacing, harmonic mode locking, SMs with 

close soliton separation, and the generated multiple solitons are always assembled together as 

a bunch with a large soliton separation. As shown in an example in Fig. 13(a), the bunch is 

comprised of 11 solitons with same soliton separation of about 7 ns. Figure 13(b), (c), and (d) 

show, respectively, the oscilloscope trace of the SM pulse train, the corresponding optical 

spectrum, and the RF spectrum. The period of the fiber laser from Fig. 13(b) is about 1.56 μs, 

while the fundamental repetition frequency from Fig. 13(d) is about 639 kHz. Both values agree 

with the cavity length. The steep spectral edges clearly suggest that the generated pulse is a DS. 

The edge-to-edge bandwidth is about 0.95 nm while the 3-dB bandwidth is about 0.6 nm.  

The pulse shaping is caused by the invisible birefringence filter resulting from the polarizer 

and the cavity birefringence [57]. Assuming the average fiber birefringence is about 1 m, the 

effective bandwidth of the birefringence filter would be about 1.67 nm, which qualitatively 

matches the 0.95 nm edge-to-edge bandwidth of the generated DS. We note that for the specific 

PC setting, when we change the pump power, a new DS will abruptly appear/disappear with 

the same soliton separation instead of destroying the bunch. The structure is stable for pump 

powers from 220 mW to 700 mW. Pump powers outside of this range do not support mode 

locking. Due to the large normal dispersion, the generated DS is a heavily chirped pulse. The 

calculated transform-limited pulse duration is about 2.7 ps if a Gaussian pulse profile is 

assumed. 

The narrow spectral filtering not only supports generation of DS but also excludes the closing 

binding of DSs. The nominal 1.67-nm bandwidth cannot support pulse separation shorter than 

2 ps. Moreover, an all-normal dispersion cavity can only support heavily chirped pulses, 

consequently DSs with long pulse separation are expected. We currently are not sure about the 

factor which determines the ~7 ns pulse separation. We found that the determined pulse 

separation depends on the PC setting. Slightly changing the orientation of the PC would change 

the pulse separation, but would still maintain the SM feature – increasing/decreasing pump 

power only changes the soliton number with fixed soliton separation. 

 
Fig. 13 (a) Temporal profile of a SM of 11 solitons with equal soliton separation; (b) Oscilloscope trace of pulse 

train of the SM; (c) Optical spectrum of the SM; (d) RF spectrum of the pulse train. 

Ⅶ Conclusions 

As it is well-known, two or several atoms can form a molecule under certain conditions. A 

molecule is similar to an atom in the sense that both of them could be the fundamental unit of 

a more complicated ensemble, analogically to a material. A single-pulse soliton can function 

as a fundamental unit to form all kinds of states: bound states, harmonic states etc. SMs are 

special soliton compounds which can also function as a fundamental unit. We have summarized 

various SMs in fiber lasers comprised of different fundamental pulses: the traditional solitons 



generated in anomalous dispersion fiber lasers; DMs; parabolic pulses and gain-guided solitons 

in normal dispersion fiber lasers. All the SMs observed can form further structure or exhibit 

properties inherent to a single-pulse soliton. A new kind of SMs with nanosecond pulse 

separation is reported. The narrow spectral filter is required for such SM generation. 

SMs exist for all common mode-locking regimes in fiber lasers. They have plenty of features 

that are useful for both the fundamental research and real-life applications, with a disruptive 

potential similar to the one which the soliton has brought to ultrafast sciences. An indispensable 

prerequisite for this potential to realize is the knowledge and understanding of the complex 

dynamics relevant to formation, existence and dissolving of SMs. We intended this work to 

provide an overview on the current state of art, and thus to facilitate identification of attractive 

starting points for future discovery in the field of bound states of solitons. 
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